Tutorial

Table of contents

@Y VT 2
2 DEfINING OUI USE CBSE.......eiitieiiiiee ettt se et e eesse e beeeesaeenteeneesseenneas 2
3 Creating a Content Pre-PrOCESSONcccuiiiiiiiii ettt 2
4 DOWNIOAd TULOI @l SOUICE.........ceiueeieieeeiteeiteeee st s e ste et sre e sreeae e e steenesneesreennens 3
5 TULOTT@IPIOCESSONveeieeeieeteeeete st ettt e te e e e e s re e e e s e beeaeeseesseesseese e seensesneenseeneesneensens 3
B DOCPIOCESSONeeitiie ittt ettt s e s et e e ssb e e sas e e e beeesbeeesneeesabeeesnneeens 7
7 IVLEESPIOCESSON ...t ettt e ettt e st e s st e e ae e e e be e e e se e e e st e e sane e e eane e e snseeesaneeesnneeennneeas 8
8 TULOTTAIATCWVIITEN ...ttt ettt be e ee e e sre et e neenneeneas 12
9 BUIlding AdOrEEXaMPIE......c.eiiieeiiecee et be e s b e e re e anee s 14
10 Creating a SetSpec X Path Properties File (0ptional).........ccccveveieevecve e, 14
11 Configuring arChiVe.PrOPEITIES.ccveieeie et resneesneene s 15

12 Running aDORe Archive USiNg OUr NEW PIrOCESSOFovverreriereerseriereeeeeesseseesseseesnes 16

Tutorial

1. Overview

The aDORe Archive provides arobust plug-in architecture allowing developers to
pre-process content into XM Ltapes and ARCfiles prior to indexing and registration. This
tutorial existsto help newcomers quickly understand the abilities of the aDORe Archive API.
Thetutorial should provide basic working knowledge of the API and application
configurations. By the end of this process, we'll have a ProfileProcessor implementation
which can read-in METS and DIDL documents, identify resource URLSs, download
resources, write content to an ARC file, and update corresponding references in the active
document. Once we've completed the implementation, we'll create a new processing profile
configuration set in archive.properties, then import our METS and DIDL content. To
minimize complexity, thistutorial will focus on the METS DocProcessor implementation
only. Please refer to the code and the DID-API site for additional details regarding DIDL
implementations.

2. Defining Our Use Case

Before we can go any further, we need to define the problem we intend to solve. For this
tutorial, lets use the following scenario as our use case:

We have significant collection of METS objects. Each object is represented in asingle
METS document. The METS documents each contain a MODS metadata section, as well as
aFLocat element containing a URL. For an example of our METS document structure, see
metsl.xml. Wed like to archive the collection and implement a standards-based digital object
repository upon which we can build new services. To ingest our existing content, we'll need
to read in each METS document, identify the appropriate resource URIs, then harvest and
write resources to one or more ARCfiles. Wel'll also need to update the METS document with
the new resource URL and write the documents to one or more XML Tapes.

Figure 1

3. Creating a Content Pre-Processor
Note: Source code for thistutoria is available within the adore-examples distribution.

To implement the content processor we've structured above, we need to create the following
classes:

e Tutoria Processor - Implements the aDORe Archive Profile Processor. The class defines
the pre-ingestion process for source xml content.

« Tutoria ArcWriter - Wraps up the resource processing operations. Resource URLs
retrieved from adoc are resolved to a byte array then written to the specified
ARCFileWriter instance. Once a resource has successfully been written, the resource's

Page 2

mets1.xml

Tutorial

ARCEFile Resolver URL isreturned.

» DocProcessor - A ssimple interface upon which pre-processing implementations can be
created. Thistutoria provides examples of aMETS and DIDL implementations.

» MetsProcessor - Implements the DocProcessor interface developed for the tutorial. The
implementation uses the METS Toolkit, developed by Harvard, to process METS
documents for ingestion into the aDORe Archive.

4. Download Tutorial Source
Click here to download the project described in this tutorial.

5. Tutorial Processor

First well create our ProfileProcessor implementation. The adoreArchive will initialize our
implementation using the following methods:

» setArchiveConfig() - passes al the properties defined in the archive.propertiesfile to
your implementation. The common aDORe properties have standard API calls, otherwise
use getProperties to work with a standard Java Propeties object.

» setArchiveProfile() - passes the constructed ArchiveProfile object to your
implementation. Thisis a convenience object containing the various profile processing
properties defined in archive.properties (i.e.
mets.ConverterClass=gov.lanl .adore.mets.M etsProcessor)

» setSourceArray() - passesaList of File Objectsto be processed, along with their type.
WEe'l only be working with TY PE_XML in this tutorial. We'll be creating the ARCfiles
within our implementation.

Once initialized, the runlt() method is called to start processing. The adoreArchive
application defers all pre-processing to our implementation and expects us to return alist of
XMLtape and ARCfile File objects.

Our implemenation will do the following:

« Implement the ProfileProcessor interface

« Create anew interface, DocProcessor, for processing differing formats (i.e. METS,
DIDL)

Prime our XML Tape & ARCFile Writers

Pre-process Document using DocProcessor implementation

Write documentsto XML Tape

Add generated XML Tapes & ARCFileto list of items to be registered

The source for Tutoria Processor will be similar to

Page 3

../download/src/adore-examples-1.0.2.tar.gz

Tutorial

Page 4
Copyright © 2006 LANL Research Library All rights reserved.

Tutorial

Page 5
Copyright © 2006 LANL Research Library All rights reserved.

Tutorial

Page 6
Copyright © 2006 LANL Research Library All rights reserved.

Tutorial

You'll notice that in processDocument() we define a plug-in for the DocProcessor interface.
Next we'll create this interface and our METS implementation.

6. DocPr ocessor

The DocProcessor will provide a simple interface upon which pre-processing
implementations can be created. Since we'd like to support the processing of many different
metadata formats (i.e. METS, DIDL, etc.), each implementation will need to support the
following:

Implement this interface

Read in the source document from an InputStream

Implement an open-ended processing method

Serialize processed document to avalid XML String

Implement methods to obtain identifier and datestamp for object

Pass ARCFileWriter and ARCFileResolver BaseUrl to implementing class

The source for DocProcessor will be similar to:

Page 7

Tutorial

Now that we've defined our DocProcessor interface, we can create our METS
implementation.

7. M etsPr ocessor

The MetsProcessor will utilize the METS Toolkit library, developed by Harvard, to process
each document.
Our implementation will do the following:

» Implement the DocProcessor interface
» Read InputStream to create Mets object

Page 8

Tutorial

» Get Object ID from Mets object

o Create wrapper class, Tutorial ArcWriter, to handle resource dereferencing and arc file
serialization

Iterate through content objects to obtain FLocat elements

Pass obtained URL s to Tutorial ArcWriter

Update corresponding FLocat element in Mets object

Create UTC Datestamp to reflect last modified date

Serialize Mets object asvalid XML String

The source for MetsProcessor will be similar to:

Page 9

Tutorial

Page 10
Copyright © 2006 LANL Research Library All rights reserved.

Tutorial

Page 11
Copyright © 2006 LANL Research Library All rights reserved.

Tutorial

Y ou'll notice we created a new class, Tutorial ArcWriter, to help us manage resource
dereferencing and ARCfile serialization. Next we'll create this ARCfile helper class.

8. TutorialArcWriter

Our helper class with do the following:

» Download Resource from a URL
« Write byte]] of resource to ARCfile
» Generate ARC File Resolver URL for written resource

The source for Tutoria ArcWriter will be similar to:

Page 12

Tutorial

Page 13
Copyright © 2006 LANL Research Library All rights reserved.

Tutorial

I nput Stream in = addressurl . openStrean();
Buf f er edReader bi n = new Buff eredReader (new | nput St r eanReader (i n));

int bufferSize = 4096;
byte[] buffer = new byte[bufferSize];
i nt byt esRead;

while ((bytesRead = in.read(buffer, O, bufferSize)) I= -1) {
out.wite(buffer, 0, bytesRead);
out. flush();

}

return out.toByteArray();
}

Now that we've defined our implementation, lets build our project and configure the aDORe
Archive application to recognize our new processor.

9. Building AdoreExample

By this point, your Adore Archive installation should be up and running. If you're unsure,
follow the steps outlined in the Demonstration page.

1. Let's open the module.conf file for the AdoreExamples project; locate the
adoreArchive.home property. Set this property as the file path to the adore-archive directory
(i.e. /usr/local/adoreArchive/adore-archive).

2. To build our project, run "ant build" from the AdoreExamples project directory.

3. To deploy our implementation and dependent libraries, run "ant deploy” from the
AdoreExamples project directory. Deploy will also copy the contents of the etc directory to a
new 'tutorial’ directory created in the adore-archive/etc directory.

Now our ProfileProcessor implementation and dependent libraries are available to the
aDORe Archive application. Next we need to define our setSpec X Path properties and
register our new "mets" processing profile and its associated components.

10. Creating a SetSpec XPath Properties File (optional)

The SetSpec X Path Properties file defines the X Path locations of elements you wish to
include as setSpecs. During the indexing process, each XPath definition contained in the
properties file will be used to look-up setSpec values. Within the aDORe Archive
environment, setSpec prefixes are used to support setSpecs of differing types. The most
common types are ‘collection’ and 'format’. The setSpec prefixes are OPTIONAL values.
When setSpec prefixes are used, the prefix and value are delimited by a colon (i.e.

Page 14

demo.html

Tutorial

collection:tutorial Collection). Also, it should be noted that all setSpec values are
URLEncoded and percent signs (%) are replaced with asterisks (*). This means that a
setSpec value of 'info:sid/library.lanl.gov:demo’ will be indexed as

'info* 3Asid* 2Flibrary.lanl.gov* 3Adema’; this ensures OAIl setSpec compliance. For our
sample METS document, let's say you'd like to use information from the MODS record as
setSpec values. Y ou might want to use the mods: publisher element as a collection setSpec
value and mods:internetMediaType as a format setSpec value.

A SetSpec XPath Properties file matching our criteriawould be similar to:

METS Set Spec Processing Profile
profile. name=nets

Nanmespace Definitions

profil e. nanespace. 1=http://ww. | oc. gov/ VETS/
profil e. nanespace. prefi x. 1=nets

profil e. namespace. 2=htt p://ww. | oc. gov/ nods/ v3
profil e. namespace. prefi x. 2=nods

XPath Definitions

profile.xpath.1=//mets: xm Dat a/ nods: ori gi nl nf o/ nods: publ i sher

profile.xpath. prefix.1=coll ection

profi:e.xpath.Z://nets:xn1Eata/nnds:physicalEEscription/nDds:internethdiaType
e

. xpat h. prefix. 2=f or mat

To smplify the tutorial, the AdoreExamples Ant Deploy task copies aversion of thisfile to
the 'etc/tutorial/conf/IndexSetSpecProps' directory of the adore-archive installation. Y ou'll
just need to update the path in the processing profile. Next we'll create and add our
processing profile to the archive.propertiesfile.

11. Configuring ar chive.properties

Now that we've defined our ProfileProcessor implementation and created a setSpec X Path
Propertiesfile, let'sregister our METS processor in the archive.propertiesfile. The
archive.properties file defines environmental variables used by the aDORe Archive. The
adoreArchive installer creates a pre-configured instance of archive.propertiesin the
‘adore-archive/etc' directory (i.e.
/usr/local/adoreArchive/adore-archive/etc/archive.properties).

Open archive.properties file and add the following to the bottom:

METS Processing Profile
nmet s. Ful | Name=i nfo:sid/library.|anl.gov: nmetsColl ecti on

Page 15

Tutorial

nmet s. Processor G ass=gov. | anl . ador e. deno. Tut ori al Processor
net s. Converterd ass=gov. | anl . ador e. denp. net s. Met sPr ocessor
net s. | ndexSet SpecProps=/usr/| ocal / ador eAr chi ve/ ador e- archi ve/ etc/tutorial / conf/ | ndexSet

Y ou might need to update the path to the IndexSetSpecProps file depending upon your
installation. A copy of the file fragment described above can be found in the
‘etc/conf/ArchiveProps directory of the AdoreExamples project.

What did we just configure? We have just registered our recently created processing profile
in the adore-archive application. Now when we want to ingest content from this collection,
all we need to do is specify the processing profile alias (i.e. mets) and which files to process.
The application will then know to use gov.lanl.adore.demo.Tutorial Processor as our base
plug-in and gov.lanl.adore.demo.mets.MetsProcessor for processing the source documents.
Once our content has been transformed and appended to an XML tape, the
IndexSetSpecProps file is used to index setSpec values contained in each TapeRecord.

12. Running aDORe Archive using our new processor

In the bin directory of the adore-archive module is the adoreArchive.sh Shell Script. This
script and its batch file compatriot are the gatekeepers for the aDORe Archive ingestion
process.

Each of the scripts expect the following input:

« --config [archiveProp] - Path to archive.properties file [REQUIRED]

« --profile[collectionPrefix] - Profile prefix as defined in archive propertiesfile
[REQUIRED]

o --xml || --xmltape [xmlContentPath] - Path to dir/file to process [OPTIONAL]

« --arcfile[arcFilePath] - Path to dir/file to process [OPTIONAL]

Since our processor implementation will be creating the ARCfiles, we just need to let the
application know 1) the location of our archive.propertiesfile, 2) that our processing profile
dliasis"mets’, and 3) the location of the METS documents we'd like to ingest. For the --xml
and --arcfile arguments, we can either specify asingle file or adirectory containing multiple
files. You also have the option to add the --recursive flag to recursively process all files
matching the appropriate file filter, ".xml" or ".arc".

From adoreArchive/adore-archive/bin, run the following:

sh .JadoreArchive.sh --config ../etc/archive.properties --profile mets --xml
.Jetc/tutorial/data/mets

Once the ingestion process has completed, you should see a section listing the newly
registered XMLtapes and ARCfiles. To check the contents of your newly created XMLtape,
take the UUID part of the XMLtape file name (i.e. the

Page 16

Tutorial

f796027b-e403-4194-b148-fda0225e20d8 part of
f796027b-e403-4194-b148-fda0225e20d8.xml) and add it onto the base of your Adore
Archive Accessor instance. For instance, if the Base URL is

"http://local host:8080/adore-archive-accessor/Handler/", add the UUID to the end (i.e.
http://local host:8080/adore-archive-accessor/Handl er/f 796027b-
e403-4194-b148-fda0225e20d8) then add the standard OAI-PMH arguments. For this
example, http://local host:8080/adore-archive-accessor/Handl er/f 79602 7b-
e403-4194-b148-fda0225e20d8verb=L i stRecords& metadataPrefix=native will return the
list of al records contained in that XMLtape. So your looking at the "native" metadataPrefix
and thinking "What's that?'. Well, currently the adore-archive-accessor is intended to ssmply
pull-out the contents of a TapeRecord regardless of the metadataFormat. The use of "native"
makes no assumptions to the metadata contained in the record. Y ou can add support for
alternate metadataFormats by adding a new Crosswalks mapping to the moai.propertiesfile
located in the WEB-INF directory of the adore-archive-accessor web app. Please note that
adding "Crosswalks.mets=gov.lanl .xmltape.oai. TapeCrosswal k" will function identically to
native.

Page 17

	1 Overview
	2 Defining Our Use Case
	3 Creating a Content Pre-Processor
	4 Download Tutorial Source
	5 TutorialProcessor
	6 DocProcessor
	7 MetsProcessor
	8 TutorialArcWriter
	9 Building AdoreExample
	10 Creating a SetSpec XPath Properties File (optional)
	11 Configuring archive.properties
	12 Running aDORe Archive using our new processor

